Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 13: 1012526, 2022.
Article in English | MEDLINE | ID: covidwho-2324276

ABSTRACT

A gradual decay in humoral and cellular immune responses over time upon SAR1S-CoV-2 vaccination may cause a lack of protective immunity. We conducted a longitudinal analysis of antibodies, T cells, and monocytes in 25 participants vaccinated with mRNA or ChAdOx1-S up to 12 weeks after the 3rd (booster) dose with mRNA vaccine. We observed a substantial increase in antibodies and CD8 T cells specific for the spike protein of SARS-CoV-2 after vaccination. Moreover, vaccination induced activated T cells expressing CD69, CD137 and producing IFN-γ and TNF-α. Virus-specific CD8 T cells showed predominantly memory phenotype. Although the level of antibodies and frequency of virus-specific T cells reduced 4-6 months after the 2nd dose, they were augmented after the 3rd dose followed by a decrease later. Importantly, T cells generated after the 3rd vaccination were also reactive against Omicron variant, indicated by a similar level of IFN-γ production after stimulation with Omicron peptides. Breakthrough infection in participants vaccinated with two doses induced more SARS-CoV-2-specific T cells than the booster vaccination. We found an upregulation of PD-L1 expression on monocytes but no accumulation of myeloid cells with MDSC-like immunosuppressive phenotype after the vaccination. Our results indicate that the 3rd vaccination fosters antibody and T cell immune response independently from vaccine type used for the first two injections. However, such immune response is attenuated over time, suggesting thereby the need for further vaccinations.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , Antibody Formation , COVID-19/prevention & control
2.
Viruses ; 15(2)2023 02 06.
Article in English | MEDLINE | ID: covidwho-2230305

ABSTRACT

BACKGROUND: The duration of anti-SARS-CoV-2-antibody detectability up to 12 months was examined in individuals after either single convalescence or convalescence and vaccination. Moreover, variables that might influence an anti-RBD/S1 antibody decline and the existence of a post-COVID-syndrome (PCS) were addressed. METHODS: Forty-nine SARS-CoV-2-qRT-PCR-confirmed participants completed a 12-month examination of anti-SARS-CoV-2-antibody levels and PCS-associated long-term sequelae. Overall, 324 samples were collected. Cell-free DNA (cfDNA) was isolated and quantified from EDTA-plasma. As cfDNA is released into the bloodstream from dying cells, it might provide information on organ damage in the late recovery of COIVD-19. Therefore, we evaluated cfDNA concentrations as a biomarker for a PCS. In the context of antibody dynamics, a random forest-based logistic regression with antibody decline as the target was performed and internally validated. RESULTS: The mean percentage dynamic related to the maximum measured value was 96 (±38)% for anti-RBD/S1 antibodies and 30 (±26)% for anti-N antibodies. Anti-RBD/S1 antibodies decreased in 37%, whereas anti-SARS-CoV-2-anti-N antibodies decreased in 86% of the subjects. Clinical anti-RBD/S1 antibody decline prediction models, including vascular and other diseases, were cross-validated (highest AUC 0.74). Long-term follow-up revealed no significant reduction in PCS prevalence but an increase in cognitive impairment, with no indication for cfDNA as a marker for a PCS. CONCLUSION: Long-term anti-RBD/S1-antibody positivity was confirmed, and clinical parameters associated with declining titers were presented. A fulminant decrease in anti-SARS-CoV-2-anti-N antibodies was observed (mean change to maximum value 30 (±26)%). Anti-RBD/S1 antibody titers of SARS-CoV-2 recovered subjects boosted with a vaccine exceeded the maximum values measured after single infection by 235 ± 382-fold, with no influence on preexisting PCS. PCS long-term prevalence was 38.6%, with an increase in cognitive impairment compromising the quality of life. Quantified cfDNA measured in the early post-COVID-19 phase might not be an effective marker for PCS identification.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , Humans , Antibodies, Viral , Convalescence , COVID-19/complications , Immunity, Humoral , Quality of Life , SARS-CoV-2 , COVID-19 Vaccines , Post-Acute COVID-19 Syndrome/etiology
3.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2092857

ABSTRACT

A gradual decay in humoral and cellular immune responses over time upon SAR1S-CoV-2 vaccination may cause a lack of protective immunity. We conducted a longitudinal analysis of antibodies, T cells, and monocytes in 25 participants vaccinated with mRNA or ChAdOx1-S up to 12 weeks after the 3rd (booster) dose with mRNA vaccine. We observed a substantial increase in antibodies and CD8 T cells specific for the spike protein of SARS-CoV-2 after vaccination. Moreover, vaccination induced activated T cells expressing CD69, CD137 and producing IFN-γ and TNF-α. Virus-specific CD8 T cells showed predominantly memory phenotype. Although the level of antibodies and frequency of virus-specific T cells reduced 4-6 months after the 2nd dose, they were augmented after the 3rd dose followed by a decrease later. Importantly, T cells generated after the 3rd vaccination were also reactive against Omicron variant, indicated by a similar level of IFN-γ production after stimulation with Omicron peptides. Breakthrough infection in participants vaccinated with two doses induced more SARS-CoV-2-specific T cells than the booster vaccination. We found an upregulation of PD-L1 expression on monocytes but no accumulation of myeloid cells with MDSC-like immunosuppressive phenotype after the vaccination. Our results indicate that the 3rd vaccination fosters antibody and T cell immune response independently from vaccine type used for the first two injections. However, such immune response is attenuated over time, suggesting thereby the need for further vaccinations.

4.
Hamostaseologie ; 42(S 01): S14-S23, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2087355

ABSTRACT

Coronavirus disease-2019 (COVID-19) is associated with increased thromboembolic complications. Long-term alteration in the coagulation system after acute COVID-19 infection is still a subject of research. Furthermore, the effect of sera from convalescent subjects on platelets is not known. In this study, we investigated platelet phenotype, coagulation, and fibrinolysis in COVID-19 convalescent plasma (CCP) donors and analyzed convalescent sera-induced effects on platelets. We investigated CCP donors who had a history of mild COVID-19 infection and donors who did not have COVID-19 were used as controls. We analyzed phosphatidylserine (PS) externalization, CD62p expression, and glycoprotein VI (GPVI) shedding both in platelet-rich plasma (PRP) and after incubation of washed healthy platelets with donors' sera using flow cytometry. Coagulation and fibrinolysis systems were assessed with thromboelastometry. Forty-seven CCP donors (22 males, 25 females; mean age (±SD): 41.4 ± 13.7 years) with a history of mild COVID-19 infection were included. Median duration after acute COVID-19 infection was 97 days (range, 34-401). We did not find an increased PS externalization, CD62p expression, or GPVI shedding in platelets from CCP donors. Sera from CCP donors did not induce PS externalization or GPVI shedding in healthy platelets. Sera-induced CD62p expression was slightly, albeit statistically significantly, lower in CCP donors than in plasma donors without a history of COVID-19. One patient showed increased maximum clot firmness and prolonged lysis time in thromboelastometry. Our findings suggest that procoagulant platelet phenotype is not present after mild COVID-19. Furthermore, CCP sera do not affect the activation status of platelets.


Subject(s)
COVID-19 , Male , Female , Humans , Phosphatidylserines/metabolism , Phosphatidylserines/pharmacology , Blood Platelets/metabolism , Phenotype
5.
Thromb Res ; 216: 120-124, 2022 08.
Article in English | MEDLINE | ID: covidwho-1915030

ABSTRACT

BACKGROUND: The coronavirus disease-2019 (COVID-19) is a systemic disease with severe implications on the vascular and coagulation system. A procoagulant platelet phenotype has been reported at least in the acute disease phase. Soluble P-selectin (sP-sel) in the plasma is a surrogate biomarker of platelet activation. Increased plasma levels of sP-sel have been reported in hospitalized COVID-19 patients associated with disease severity. Here, we evaluated in a longitudinal study the sP-sel plasma concentration in blood donors who previously suffered from moderate COVID-19. METHODS: 154 COVID-19 convalescent and 111 non-infected control donors were recruited for plasma donation and for participation in the CORE research trial. First donation (T1) was performed 43-378 days after COVID-19 diagnosis. From most of the donors the second (T2) plasma donation including blood sampling was obtained after a time period of 21-74 days and the third (T3) donation after additional 22-78 days. Baseline characteristics including COVID-19 symptoms of the donors were recorded based on a questionnaire. Platelet function was measured at T1 by flow cytometry and light transmission aggregometry in a representative subgroup of 25 COVID-19 convalescent and 28 control donors. The sP-sel plasma concentration was determined in a total of 704 samples by using a commercial ELISA. RESULTS: In vitro platelet function was comparable in COVID-19 convalescent and control donors at T1. Plasma samples from COVID-19 convalescent donors revealed a significantly higher sP-sel level compared to controls at T1 (1.05 ± 0.42 ng/mL vs. 0.81 ± 0.30 ng/mL; p < 0.0001) and T2 (0.96 ± 0.39 ng/mL vs. 0.83 ± 0.38 ng/mL; p = 0.0098). At T3 the sP-sel plasma level was comparable in both study groups. Most of the COVID-19 convalescent donors showed a continuous decrease of sP-sel from T1 to T3. CONCLUSION: Increased sP-sel plasma concentration as a marker for platelet or endothelial activation could be demonstrated even weeks after moderate COVID-19, whereas, in vitro platelet function was comparable with non-infected controls. We conclude that COVID-19 and additional individual factors could lead to an increase of the sP-sel plasma level.


Subject(s)
COVID-19 , Biomarkers , COVID-19 Testing , Humans , Longitudinal Studies , P-Selectin , Platelet Activation
SELECTION OF CITATIONS
SEARCH DETAIL